Cocycle superrigidity for profinite actions of irreducible lattices

نویسندگان

چکیده

Let $\Gamma$ be an irreducible lattice in a product of two locally compact groups and assume that is densely embedded profinite group $K$. We give necessary conditions which imply the left translation action $\Gamma \curvearrowright K$ “virtually” cocycle superrigid: any ${w\colon \Gamma\times K\rightarrow\Delta}$ with values countable $\Delta$ cohomologous to factors through map $\Gamma\times K\rightarrow\Gamma\times K\_0$ for some finite quotient $K\_0$ As corollary, we deduce ergodic $\Gamma=\mathrm{SL}\_2(\mathbb Z\[S^{-1}])$ virtually superrigid W$^\*$-superrigid nonempty set primes $S$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On cocycle superrigidity for Gaussian actions

We present a general setting to investigate Ufin-cocycle superrigidity for Gaussian actions in terms of closable derivations on von Neumann algebras. In this setting we give new proofs to some Ufin-cocycle superrigidity results of S. Popa and we produce new examples of this phenomenon. We also use a result of K. R. Parthasarathy and K. Schmidt to give a necessary cohomological condition on a gr...

متن کامل

Superrigidity for Irreducible Lattices and Geometric Splitting

1.1. Superrigidity. In the early seventies, Margulis proved his celebrated superrigidity theorem for irreducible lattices in semisimple Lie and algebraic groups of higher rank. One of the motivations for this result is that it implies arithmeticity : a complete classification of higher rank lattices. In the case where the semisimple group is not almost simple, superrigidity reads as follows (se...

متن کامل

Cocycle Superrigidity for Ergodic Actions of Non-semisimple Lie Groups

Suppose L is a semisimple Levi subgroup of a connected Lie group G, X is a Borel G-space with finite invariant measure, and α : X × G → GLn(R) is a Borel cocycle. Assume L has finite center, and that the real rank of every simple factor of L is at least two. We show that if L is ergodic on X, and the restriction of α to X × L is cohomologous to a homomorphism (modulo a compact group), then, aft...

متن کامل

COCYCLE SUPERRIGIDITY FOR MALLEABLE ACTIONS WITH SPECTRAL GAP Preliminary version

Let Γ y X be a measure preserving (m.p.) action of a discrete group Γ on a probability measure space (X,μ) and H ⊂ Γ a non-amenable subgroup with commutant H = {g ∈ Γ | gh = hg, ∀h ∈ H} infinite. We prove that if the action satisfies a malleability condition on HH, is weak mixing on H and has stable spectral gap on H (e.g. if the action is Bernoulli on HH), then any cocycle with values in a Pol...

متن کامل

On Popa’s Cocycle Superrigidity Theorem

Theorem 1.1 (Popa’s Cocycle Superrigity, Special Case). Let Γ be a discrete group with Kazhdan’s property (T), let Γ0 < Γ be an infinite index subgroup, (X0,μ0) an arbitrary probability space, and let Γ (X,μ) = (X0,μ0)0 be the corresponding generalized Bernoulli action. Then for any discrete countable group Λ and any measurable cocycle α : Γ × X → Λ there exist a homomorphism : Γ → Λ and a meas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Groups, Geometry, and Dynamics

سال: 2023

ISSN: ['1661-7207', '1661-7215']

DOI: https://doi.org/10.4171/ggd/700